Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available October 31, 2025
- 
            Megapixel single-photon avalanche diode (SPAD) arrays have been developed recently, opening up the possibility of deploying SPADs as generalpurpose passive cameras for photography and computer vision. However, most previous work on SPADs has been limited to monochrome imaging. We propose a computational photography technique that reconstructs high-quality color images from mosaicked binary frames captured by a SPAD array, even for high-dyanamic-range (HDR) scenes with complex and rapid motion. Inspired by conventional burst photography approaches, we design algorithms that jointly denoise and demosaick single-photon image sequences. Based on the observation that motion effectively increases the color sample rate, we design a blue-noise pseudorandom RGBW color filter array for SPADs, which is tailored for imaging dark, dynamic scenes. Results on simulated data, as well as real data captured with a fabricated color SPAD hardware prototype shows that the proposed method can reconstruct high-quality images with minimal color artifacts even for challenging low-light, HDR and fast-moving scenes. We hope that this paper, by adding color to computational single-photon imaging, spurs rapid adoption of SPADs for real-world passive imaging applications.more » « less
- 
            Active depth sensing achieves robust depth estimation but is usually limited by the sensing range. Naively increas- ing the optical power can improve sensing range but in- duces eye-safety concerns for many applications, including autonomous robots and augmented reality. In this paper, we propose an adaptive active depth sensor that jointly opti- mizes range, power consumption, and eye-safety. The main observation is that we need not project light patterns to the entire scene but only to small regions of interest where depth is necessary for the application and passive stereo depth es- timation fails. We theoretically compare this adaptive sens- ing scheme with other sensing strategies, such as full-frame projection, line scanning, and point scanning. We show that, to achieve the same maximum sensing distance, the proposed method consumes the least power while having the shortest (best) eye-safety distance. We implement this adaptive sensing scheme with two hardware prototypes, one with a phase-only spatial light modulator (SLM) and the other with a micro-electro-mechanical (MEMS) mirror and diffractive optical elements (DOE). Experimental results validate the advantage of our method and demonstrate its capability of acquiring higher quality geometry adaptively. Please see our project website for video results and code: https://btilmon.github.io/e3d.htmlmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available